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Software Development for Micro/Mini Machines

Robert Glaser
Telesaver

27.1. INTRODUCTION

Microprocessors and minicomputers continue
to become more powerful every year. As a re-
sult, each has found growing application in
areas where larger computers had previously
been used and new uses that had earlier been
impractical. With rapidly changing technol-
ogy, the classifying distinctions between mi-
crocomputers, minicomputers, and conven-
tional computers have become less clear.
Because minicomputers fall between micro-
processors and large computers, emphasis in
this chapter is placed upon microprocessors.
Generalizations about microcomputers apply
to low-end minicomputers, whereas high-end
minicomputers bear a closer relationship with
large mainframe computers.

A multitude of microprocessor chips are
available, each of which has its own peculiari-
ties. This chapter, however, will focus on the
features the various chips have in common.

A major difference between software for mi-
cros and larger computers is that the micro
software is highly dependent upon the micro-
computer hardware. Micro software is nearly
always concerned with low-level input/output
tasks. Communication with peripheral chips is
of major concern. When dealing with micro-
processors, it is not possible to effectively dis-
cuss software independent of hardware, and
thus this chapter includes microprocessor-
hardware-oriented material.

A microprocessor, as discussed in this chap-
ter, is a central processing unit (CPU) con-
tained within a single integrated circuit pack-
age. The CPU provides logical, arithmetic,
and control functions. The instruction set is
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predefined. The control functions include in-
struction decoding, and memory address, data,
read /write, and selection signals. This type of
microprocessor is different from a micropro-
grammable processor, which is also sometimes
called a microprocessor. This device requires a
number of integrated circuits to implement the
central processing section alone. User-written
microcode defines the instruction set of this
type of processor system. These micropro-
grammable processors find their chief use in
specialized applications requiring high speed.

A microcomputer consists of a microproces-
sor CPU, program memory, data memory,
input/output (I/O) devices, and supplemen-
tary control logic. This may require several
chips on a single circuit board, or several
boards. The program memory is often nonvol-
atile read-only memory (ROM). Data mem-
ory is read/write random-access memory
(RAM), and 1/0O can be through a variety of
peripheral chips. |

Minicomputers generally have higher
speeds and larger word sizes than microcom-
puters. They contain the same elements as mi-
crocomputers, though implemented from a
larger number of integrated circuits. At one
time minicomputers consisted largely of TTL
logic gates, though now many are constructed
with fast microprogrammable processor chip
sets. The circuitry typically requires several
circuit boards.

27.2. APPLICATIONS OF MICRO/
MINICOMPUTERS

The applications of micro/minicomputers fall
into two distinct categories: equipment con-
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trollers and general purpose computers. The
software for equipment controllers is some-
what different from that for large computers;
hence, equipment controller applications are
stressed here. The more general purpose uses
of micro- and minicomputers, which can be dif-
ferent from those of larger computers, are in-
cluded as well.

Equipment Controllers

There are several advantages of implementing
controllers from microcomputers. Random-
logic designs require different parts for each
system. Low-quantity products do not justify
the large capital outlay required to design, lay
out, and manufacture specialized integrated
circuits. Available parts must be used, and sev-
eral circuit boards filled with logic gates are
the usual result. The cost of design, layout,
board manufacture, and testing must all be
covered by a single controller product. Micro-
computer implementation of the product per-
mits much of the work to be useful for a vari-
ety of similar products. Off-the-shelf
microprocessor parts that are mass produced
provide low-cost alternatives to special-pur-
pose integrated circuits. Several controller
products can use a standardized microcom-
puter circuit board. The development cost of a
controller is then reduced to that of the con-
troller program. A smaller number of circuit
boards is also possible because of the use of a
cost-effective  sophisticated microprocessor
part. Product modifications are program
changes requiring only a ROM change,
whereas with a random-logic design, circuit
board modifications and additions are neces-
sary. The scope of possible product modifica-
tion is greatly limited for random-logic designs
as compared with microprocessor implemen-
tations. Through the use of microprocessor-
based design, the special-purpose functions of
an equipment controller are supplied by a spe-
cial-purpose controlling program, and other
aspects of the product can be used for a mul-
titude of other products.

Computerizing an equipment controller im-
poses certain limitations on the microcompu-
ter. The physical size, power drain, and cost of

the computer must be no larger than that of
the random-logic design being replaced. These
restrictions become more important when new
applications rather than replacement applica-
tions are considered. Intelligent products are
possible that cannot be contructed without mi-
croprocessors because of limitations of size,
power, and cost. The low size, power, and cost
of microprocessor-based controller designs are
precisely what create the new applications.

Microprocessor-based controller applica-
tions can be found in a variety of areas. Con-
sumer-oriented devices show a large number of
examples. Uses in radio receivers and home
entertainment equipment proliferate and are
but a sample of what can be done in consumer
electronics. The Ahwatukee House is perhaps
the ultimate in computerizing a home [1-3];
the possibilities for improving everyday living
are immense [4]. The automotive controller
[5] is a particularly high-volume application.
Uses in traffic control [6] are growing. Very
human-oriented applications include aid for
the handicapped [7] and medical uses as com-
mon as aid in childbirth [8]. Commertial and
industrial applications include controlling sat-
ellites [9], astronomical telescopes [10], and
gas turbine generators [11]. Applications in
the field of test equipment [12, 13] are
€normous.

Many consumer, commercial, industrial,
and research devices can be enhanced with in-
telligent controllers. The wide spectrum and
sheer number of applications is limited only by
the creativity of equipment designers. Other
applications can be found in References 14 to
19.

General Purpose Computers

The microprocessor revolution has made it
possible for micro- and minicomputers to be
used in much the same ways as larger conven-
tional computers. Standard business applica-
tions of payroll computation, inventory main-
tenance, general ledger, and address label
sorting and printing have become feasible for
small businesses utilizing micro- or minicom-
puters. Development systems for controller de-
velopment and support are often implemented
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with micro- or minicomputers. Section 27.8
deals with these systems. Small computer sys-
tems for educational uses have improved com-
puter science educational programs. Small
stand alone-systems can give students a better
learning opportunity than punched card /batch
submission methods. The introduction of mi-
croprocessor-based low-cost general-purpose
computers spurred the entrance of the com-
puter into the home. Home computing, which
has grown to significant levels, includes games,
computer-aided instruction, and text process-
ing. As the hobby has grown, so has the num-
ber of magazines to serve it [20-24]. Personal
computing equipment has proliferated to the
point where some of it has been called into
professional service [25].

27.3. MICROCOMPUTERS,
MINICOMPUTERS, AND LARGER
COMPUTERS

The classification of computer systems as
micro, mini, or large can be based at best only
on general characteristics. The dividing lines
between each category are difficult to draw
and keep changing.

Word Size

The more bits per word a processor has, the
more powerful each instruction is. This is par-
ticularly noticeable in arithmetic computation.
The number of operation codes is limited when
dealing with small word sizes, so machines
with small word sizes have a correspondingly
greater number of multiple word instructions.
Microcomputers generally have 4- or 8-bit
words, although 16 bit MICroOprocessors are
available, and 32 bit chips are not far off.
Minicomputers have between 12- and 24-bit
words, with 16 bit being the most prevalent.
Large computers have 32 bit words and up.
Processor word size is not as reliable an indi-
cator as it once was, although 4- or 8-bit pro-
cessors would almost always be classified as
microprocessors, geared to control applications
and low-complexity processing problems.

Architecture

Processor architectures vary considerably
within each category. Microprocessors tend to
have more restrictive architectures than the
others; data paths can be quite specialized,
with one or more memory registers required to
access general data memory. Larger word
sizes facilitate easier memory access by sup-
plying a greater number of bits for address
specification. Separate program memory and
data memory paths are more often encoun-
tered in microprocessors than larger machines.
This is more natural for controllers because
there are normally different types of memory
for each function. These architectures usually
require memory address pointers for data
storage.

The simplest architectures provide a single
accumulator for arithmetic, logical, and move
operations. More sophisticated arrangements
provide several accumulators, or general-pur-
pose registers for these operations, Micropro-
cessor chips tend to have single or double ac-
cumulators, since the small word size makes it
difficult to have enough instruction code space
to reserve register fields. This limitation cre-
ates data bottlenecks, which require data
moves to achieve proper positioning for subse-
quent operations. Minicomputers tend to have
a number of general-purpose registers, permit-
ting operation code specification of register
operands.

Instruction Set

The larger the word size, the greater number
of instructions that can be specified in single
word instructions. Consequently, in addition to
the fact that larger machines have greater ca-
pabilities otherwise, microprocessors have
much sparser instruction sets than minicom-
puters and larger computers. Internal stack
space is sometimes found in microprocessors, a
useful hardware feature but a software-limit-
ing situation. Paged addressing, instead of rel-
ative or even absolute addressing, is often
found in microprocessors. A bare minimum in-
struction set includes data moves, logical
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shifts, AND, OR, exclusive OR, and addition.
Some microprocessor sets include little more
than this minimum, whereas others include a
respectable number of additional operation
codes (op-codes). Small machines use subrou-
tines to replace missing op-codes. Codes such
as multiply and divide are typically missing
from microprocessors, and floating point in-
structions are often missing from mini-
computers.

Speed

Naturally, the operation speed increases from
micro- to mini- to large computer. This is
partly inherent in the type of technology from
which the devices are constructed, and partly
because of the greater number of instructions
that must be performed to provide the same
throughput for smaller processors. Dealing
with 32 bit integers on a 4 bit machine clearly
requires over 8 times the execution time of a
32 bit machine. Accumulator and memory ad-
dress register bottlenecks result in even more
operations being necessary. Limited instruc-
tion sets call for greater use of subroutines. All
of these restrictions produce the same result: a
slower machine. Even if the instruction exe-
cution times of micro-, mini-, and large com-
puters were equal, there would still be a speed
contrast. Additionally, there usually is an in-
herent speed differential. Microcomputers can
have execution times of several microseconds,
with minicomputers slightly less, and large
computers well into the submicrosecond range.

Hardware Interfaces

Microprocessors have simple interface require-
ments when compared with mini- and large
computers. Input/output devices and general
hardware can be added more easily to micros
because the interfaces are less restrictive. So-
phisticated handshaking and bus-driving re-
quirements are necessary to obtain the higher
operating speeds of mini- and large computers.
Additional peripheral chips may be placed
right on the bus on controller-size micros,
where separate boards and bus extenders and

terminators may be required for larger

systems.

27.4. A MICROPROCESSOR SURVEY

There are scores of microprocessor chips avail-
able. A history of microprocessor development
can be found in References 26 to 28. A brief
description is given for some of the more pop-
ular ones.

Four Bit

These micros are intended chiefly for use in
control applications, particularly when tasks
are [/O intensive. Computations are often
done in binary coded decimal form (BCD).
Intel’'s MCS-4 chip set [29], announced in
1971, is notable for opening the microproces-
sor era. Each member of the chip set is pack-
aged in a 16 pin dual in-line package (DIP),
made possible through the use of a multiplexed
4 line bus for address and data. This set con-
sists of the 4004-CPU, 4001-ROM, 4002-
RAM, and 4003-shift register. The system uti-
lizes 12-bit addresses and 4-bit data words.
The ROM, RAM, and shift register each pro-
vide /O lines. The pMOS CPU supplies 46
instructions, contains a 3-level internal stack,
and the minimum instruction time is 10.8 mi-
croseconds. An external clock and driver are
required, and no interrupts are provided. Six-
teen 4 bit general-purpose registers may also
be used as eight 8 bit index registers. 1/O ad-
dressing is set up by special control commands.

Eight Bit

There are more micros in the 8 bit category
than any other. These are suited to character
manipulation as well as 1/O control and mod-
erate arithmetic computation.

The 8008 CPU [30] was the first 8 bit CPU.
Housed in an 18 pin DIP, an 8 line bus is mul-
tiplexed to supply 14-bit addresses and 8-bit
data words. This pMOS-fabricated CPU sup-
plies 48 instructions, contains a 7-level internal
stack, and has a minimum instruction time of
20 microseconds. An external clock and driver
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are needed, and a single interrupt input is pro-
vided. Seven 8-bit scratch-pad registers are
available. The 8008’s architecture, less limit-
ing than the 4004’s, opened up many applica-
tions for microprocessors.

A step up from the 8008, Intel’s 8080 CPU
[31] has a 2 microsecond minimum instruction
time because of nMOS fabrication. The 8080
has separate address and data lines, requiring
the larger 40 pin package. There are 16 ad-
dress lines, permitting up to 64K memory
bytes to be accessed. The register set is the
same as that of the 8008, and the instruction
set is an expanded set of the 8008, with 72 in-
structions. Several stack instructions and one
register indirect branch instruction are added.
The processor uses an external stack, has a sin-
gle interrupt input, and requires an external
clock. A hold mode is incorporated that per-
mits direct memory access (DMA).

The Intel 8085 CPU [32] incorporates all of
the features of the 8080. It has five interrupt
inputs and an on-chip clock oscillator, and re-
quires only a single power supply voltage. To
retain the 40 pin package, a multiplexed ad-
dress/data bus is utilized. The minimum in-
struction time is 1.3 microseconds. The chief
advantage of the 8085 over the 8080 is a re-
duction,in system support components.

Software-compatible with the 8080/8085,
Zilog’s Z-80 CPU [33] adds relative and in-
dexed addressing modes to the base instruction
set. Block transfer and search instructions are
also provided, and the Z-80 executes 158 in-
structions. Seven alternate general-purpose
registers and two index registers are included
in addition to those of the 8080/8085 set.
Hardware features include a single power sup-
ply requirement, dynamic memory refreshing,
two interrupt inputs, and provision for DMA.

The 8080 processor series may be consid-
ered to be register oriented; instructions permit
operations with the general-purpose registers.
Motorola’s 6800 CPU [34] has two accumu-
lators and a 16 bit index register; the instruc-
tion set includes operations with memory lo-
cations. This CPU can be considered to be
memory oriented. Accumulator, immediate,
direct, extended, indexed, implied, and relative
addressing modes are available. The minimum

instruction time is 2 microseconds, and there
are 72 instructions. Housed in a 40 pin pack-
age, the 6800’s 16 bit address bus is separate
from the data bus. An external clock generator
is required, and only a single power supply
voltage is needed. There are two interrupt in-
puts, and the chip is capable of DMA. No spe-
cial I/O control lines or instructions are pro-
vided, mandating memory-mapped 1/0.

The Motorola 6802 CPU [35] is virtually
identical with the 6800 except that it has a
built-in clock generator, and 128 bytes of in-
ternal RAM. The chief advantage of the 6802
is a reduction in system components.

MOS Technology’s MCS6502 CPU [36] is
also a memory-oriented device, with an accu-
mulator and two 8 bit index registers. A num-
ber of addressing modes are available: accu-
mulator, immediate, absolute, zero page,
indexed zero page, indexed absolute, implied,
relative, indexed indirect, indirect indexed,
and absolute indirect. There are two interrupt
inputs, and the only active devices required for
clock generation are two inverters. A single
supply voltage powers the chip, and the mini-
mum instruction time is 2 microseconds. The
6502 has a 64K address space, but 28-pin
package variants of this CPU have 4K or 8K
addressing.

The RCA CDP1802 COSMAC CPU [37]
operates over the wide temperature range of
—35to +125°C and can draw very little cur-
rent at slow clock rates. The 1802 is powered
from a single voltage, has one interrupt input,
a built-in clock, and excellent DMA provision,
The 40 pin COSMAC includes four input lines
and one output line. There are 1/O instruc-
tions and control lines. The instruction set is
centered about its sixteen 16 bit registers. The
COSMAC’s architecture is uncommon; ma-
nipulation of the registers produces results that
with most other processors are handled in a dif-
ferent fashion. Register, register-indirect, im-
mediate, and stack addressing modes are
available.

Intel’s MCS-48 [38] series of CPUs finds
utilization in physically small control applica-
tions. The 8048 contains 1K bytes of ROM
program memory, 64 bytes of RAM data
memory, an 8-level stack, 27 I/O lines, a pro-
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grammable timer counter, an interrupt input,
and a clock oscillator. There are 96 instruc-
tions and the minimum instruction time is 2.5
microseconds. The CPU operates from a single
power voltage and the 40 pin package can be
used with no support devices. Other members
of the MCS-48 family contain twice as much
RAM or ROM, erasable, programmable
ROM (EPROM), no ROM, or are housed in
a 28 pin DIP.

Sixteen Bit

Microprocessors with large word size can chal-
lenge the power of minicomputers. These pro-
cessors are suited for high-throughput control
systems, and relatively complex computations.

Texas Instruments’ TMS9900 CPU [39]
features a memory-to-memory architecture. A
workspace pointer points to 16 workspace reg-
isters in memory. The register file can be
changed by altering the workspace pointer.
The 15-line address bus accommodates 32K
words (64K bytes). A single interrupt input,
operating in conjunction with 4 interrupt code
inputs, provides 16 vectored interrupts with
the addition of an external priority encoder.
Housed in a 64 pin package, the 9900 requires
3 power supply voltages and an external 4-
phase clock. The instruction set includes mul-
tiply and divide, and 8 addressing modes. The
minimum instruction time is 2.7 microseconds.

Intel’s 8086 CPU [40] can address 1M byte
of memory with a 20 bit address bus, and has
fourteen 16 bit registers. Housed in a 40 pin
package, a single power supply voltage is re-
quired. There are two interrupt inputs and an
external clock generator is needed. The in-
struction set includes multiply and divide, and
has 24 addressing modes. The minimum in-
struction time is 400 nanoseconds.

Zilog’s Z-8000 CPU [33] can address 8
megabytes of memory, and has sixteen 16-bit
general-purpose registers. The Z-8000 oper-
ates from a single power supply voltage and is
housed in a 48 pin package. The instruction set
includes multiply and divide, and 8 addressing
modes are available. The minimum instruction
time is 750 nanoseconds.

Motorola’s 68000 CPU [41] can address 16

megabytes and contains 17 32-bit registers.
The instruction set includes multiply and di-
vide, and has available 14 addressing modes.
Data types associated with the 68000 are bits,
BCD digits, bytes, words, and long words. Be-
cause of the 32 bit word option, this micropro-
cessor can be considered a 32 bit machine with
16 bit memory access.

27.5. HARDWARE FEATURES

The microprocessor hardware knowledge that
is most frequently required deals with interfac-
ing: how to interface a CPU with memory and
peripheral devices; how to interface support
chips with the external environment; and how
to interface several processors together to pro-
duce a larger system. The hardware interface
method chosen determines the type of software
driver that is necessary. Interchip interfacing
problems are alleviated by manufacturer’s
chip sets. Understanding the processor buses is
mandatory for peripheral connections, and
various communication methods may be uti-
lized between devices.

Chip Sets

Most manufacturers produce support chips for
their microprocessors [42]. These include
clock generators, ROM, RAM, bus drivers,
and I/O. This permits an entire microcom-
puter system to be constructed from compo-
nents that are guaranteed compatible. This
can sometimes offer the advantage of multiple
functions in support chips that are matched to
the CPU’s needs.

An Intel MCS-80 family [31] processor sys-
tem could consist of the following: 8080, 8224,
8228, 8205, 8255, 8708, and two 8111s. The
8224 generates the clock and produces a reset
signal. A data bus buffer, control signal de-
multiplexer, and single interrupt handler are
combined in the 8228 system controller. The
8205 address decoder supplies chip selects.
The 8708 gives 1K bytes of program memory,
and the 8111s together provide 256 bytes of
data memory. Three ports of 1/O are handled
by the 8255. This set of chips comprises a com-
plete microcomputer package.
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A similar Motorola 6800 system [34] would
consist of the following: 6800 CPU, 6870
clock, 6830 ROM, 6810 RAM, and 6820 pe-
ripheral interface adapter. This combination
gives 1K bytes of program memory, 128 bytes
of data storage, and 20 I/O lines.

Combination support chips can reduce the
component count greatly. An Intel MCS-85
system [32] could consist entirely of three
chips: 8085, 8755, and 8155. The 8085 CPU
contains the clock, the 8755 gives 2K bytes of
EPROM program storage and 16 bits of 1/0,
and the 8155 supplies 256 bytes of RAM data
memory, 22 bits of 1/0, and a programmable
timer/counter. The 8755 and 8155 support
chips contain the demultiplexing circuitry re-
quired to interface with the 8085 bus. Because
of the importance of matching chip sets, the
choice of a microprocessor often is more de-
pendent upon the availability of suitable sup-
port components for a particular application
than characteristics of the CPU itself.

Processor Buses

Most microprocessors share bus characteris-
tics. Figure 27.1 shows a typical CPU. The ad-
dress bus is a set of output lines that is used to
select a single word of memory or 1/0. To per-
mit DMA operations, this bus may have a
high-impedance state to allow another device
to generate a system address. The data bus is
bidirectional, and the width sets the processor
word size. This bus inputs data returning from
memory or 1/O during a read cycle, and out-
puts data going to memory or 1/O during a
write cycle. Data bus direction and access tim-
ing are set by the control bus. The control bus
consists of the signals necessary to access
memory and 1/0, to distinguish memory from
1/0O, and other controls that may be processor
dependent.

In an MCS-80 system, the 8228 provides
four control signals: memory read, memory
write, 1/O read, and 1/O write. With this set
of controls, only one is active at any time. The
appropriate line is gated with an address de-
coder output to activate the desired compo-
nent. A ROM should only be activated during
a memory read cycle, so that signal need only

ADDRESS BUS
CENTRAL
PROCESSING
L DATA BUS

CONTROL BUS

Figure 27.1. Processor buses,

be used for ROM. RAM chip selects must be
gated with the memory-read and memory-
write lines to allow both operations. 1/0 device
selects are gated with one or both of the 1/0
control signals. Devices gated with 1/O control
signals will only be activated during I/0O com-
mands; for the 8080 these are but two instruc-
tions: IN and OUT. Alternatively, I/0O devices
may be gated with the memory control signals.
Naturally, addressing is required to distin-
guish these devices from memory locations.
This is called memory-mapped 1/0; 1/O de-
vices are treated the same as memory, and
therefore can be addressed through any mem-
ory-accessing instruction. Processors that have
separate 1/O channels supply the option of
using the separate I/O address space or using
a portion of the memory address space via
memory-mapped I/O. For those processors
that have no special I/0O address space, mem-
ory-mapped 1/0O must be used.

On the 6800, there are three control lines:
R/W, VMA, and 82. The R/W line distin-
guishes between read and write operations. A
valid memory address is on the address bus
only when the VMA line is active. In addition,
the clock phase two is reserved for memory ac-
cesses. Chip selects should be gated with all
three signals and an address decoder. There
are no 1/O signals or instructions on the 6800,
so memory mapped I/O is used exclusively.

The control bus emanating from the CPU
may be converted into a different set of control
signals used throughout the microcomputer;
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the three 6800 signals can be converted into
two control signals (memory read and memory
write) if desired. Which set of control signals
is preferable in any system is wholly dependent
upon the accessing organization of the periph-
eral chips.

I/ 0O Peripherals

Peripheral chips range from the very simple to
the quite complex. The simplest output port is
just a latch; the latch inputs go to the data bus,
the gate is the chip select, and the outputs
comprise the peripheral lines. The simplest
input port is a tristate buffer; the processor
reads the peripheral lines when the control sig-
nals activate the buffer. Several of these I/O
ports can be combined into a single chip with
additional steering logic, and are called periph-
eral interface adapters (PIA), or programma-
ble peripheral interfaces (PPI). (For example,
the 6820 and the 8255.) More sophisticated
logic functions realized on a single chip can be
used as peripheral devices, such as a universal
asynchronous receiver/transmitter (UART).
Most processor families contain at a minimum
PIA and UART chips.

Complex peripheral functions are imple-
mented with single chip microprocessors. In-
tel’s UPI-41 [43, 44] is a universal peripheral
interface chip that is a complete processor with
controls configured as a slave device. The UPI-
41 can be used to preprocess information to
conform with any number of external devices,
removing this burden from the main processor
and permitting more time to be allocated to
higher-level processing. There are other spe-
cialized peripheral chips that are actually sin-
gle chip processors programmed by the man-
ufacturer for a specific function; this is
transparent to the user.

The most sophisticated peripherals can be
coprocessors. These devices monitor CPU op-
eration and perform functions as needed with-
out specifically being requested by the main
CPU: the effect is to extend the instruction set
of the CPU. Intel’'s 8087 [45-47] floating-
point processor and 8089 [40] I/O processor
are in this category.

Communication Methods

The CPU must know when a peripheral is
ready to receive data, and then have a method
to send the data. Alternatively, when a device
needs servicing a method must be provided for
it to inform the CPU. Communication be-
tween peripheral chips and the CPU is usually
through registers in the peripheral. A control
register permits the CPU to configure the pe-
ripheral as required. A status register is read
by the CPU to determine current device con-
ditions. Data registers are used to transfer the
actual information.

In the simplest control environment, the
CPU constantly polls the peripherals to deter-
mine if any require servicing. Polling stops to
permit peripheral handling when servicing is
required, and continues when the request is
met. A disadvantage of this polling method
is that the CPU can spend a large portion of
its processing time just checking service re-
quest bits of each device. During the servicing
of a device, it may be desirable for higher-
priority peripherals to have the ability to re-
quest servicing. Polling during device servicing
can become complicated when a number of pe-
ripherals exist. There also can be a high or un-
predictable latency period between when the
request occurs and when the servicing is
granted. These problems can often be elimi-
nated by using interrupt-driven peripherals.

With an interrupt-driven system [48, 49], in
addition to the device register communica-
tions, a peripheral output line is fed to a CPU
interrupt input. When the device requires ser-
vicing, the processor is interrupted, and the
service routine can communicate through the
peripheral registers. Through proper handling
of interrupt enables, masks, and priorities, all
devices can be serviced optimally with
interrupts.

Some peripheral devices require data rates
that are too high to be handled through CPU/
data register communications. An example is
that of a floppy disk controller peripheral.
These peripherals may achieve the necessary
data rate through direct memory access
(DMA). The peripheral activates an output
line when data are either available or required.
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This output feeds an input on the CPU which
requests a DMA cycle. When the current in-
struction is completed, the CPU grants the
DMA cycle and notifies the peripheral by ac-
tivating a DMA-granted output line. This tells
the peripheral that the CPU has freed the
buses, and the peripheral can seize the buses
and communicate with memory directly, in-
stead of going through the processor. When
the data transfer is complete, the peripheral
lowers the DMA request line, and the CPU re-
gains control of the buses. This method per-
mits data rates as high as the memory band-
width is capablee. DMA may be handled
completely by the peripheral device, or there
may be a special DMA controller peripheral
chip that provides the addresses and control
signals for the data-requesting peripheral.

27.6. LANGUAGE FEATURES

Microprocessor instruction sets vary between
processors, and machine language is greatly af-
fected by architecture. The operations availa-
ble are generally similar for many CPUs. Spe-
cial architecture-related instructions are
usually provided. A microprocessor language
can.be best understood through knowledge of
the machine’s architecture, the various ad-
dressing modes, how flags are affected and
tests are made, and familiarity with the avail-
able instructions. The 8080 and 6800 are used
in this section for illustration.

Addressing Modes

Machine operations must specify an operand
or operands. The allowable addressing modes
designate the operands that may be selected.
Register addressing is used when operands
are general-purpose registers. The 8080 in-
struction “INR r” increments the contents of
register r, where r is any of the seven 8080 reg-
isters. With other processors, register address-
ing is called accumulator addressing. The 6800
instructions “INC A” and “INC B” increment
accumulator A and B, respectively. The regis-
ter- (or accumulator-) addressing mode tends
to be the fastest because the operands are in-
ternal to the CPU, and additional memory ac-

cesses are not required beyond the instruction
fetch. Register addressing produces compact
code because these are single byte instructions.

The immediate addressing mode is used
when an operand is constant data. The 8080
instruction “ADI data” adds the data in the
memory location following the op-code to the
accumulator and stores the result in the accu-
mulator. The 6800 instruction “ADD
A #data” does likewise with accumulator A.
Immediate addressing can refer to single- or
double-byte data, resulting in either 2- or 3-
byte instructions.

Direct, absolute, or extended addressing
specifies an exact memory location for use as
an operand. The 8080 instruction “LDA addr”
is a 3 byte instruction where the address of the
memory location containing the data to be
loaded into the accumulator is given. This is
similar to the 6800 instruction “LDA A addr”
when extended addressing is used—this 3 byte
instruction performs the same action with ac-
cumulator A as the 8080 instruction does. A
variant of extended addressing on the 6800 is
direct addressing. This mode implies operands
located at addresses within the first page of
memory (addresses 0 through 255). Only a
single byte is needed to specify the operand;
hence these instructions are 2 bytes long.

Register indirect addressing specifies a reg-
ister pair that contains the memory address
where the data are located. The 8080 instruc-
tion “LDAX rp”, where rp is a register pair,
loads the accumulator from the memory loca-
tion whose address is the contents of the spec-
ified 16 bit register. Indexed addressing takes
this method a step further. An index register
specifies a base address to which a single byte
offset given in the second byte of the instruc-
tion is added, supplying the address of the
data. The 6800 instruction “LDA A offset, X"
takes the 8 bit quantity offset, adds it to the 16
bit index register, and uses the resultant 16 bit
address to locate the data to be placed into ac-
cumulator A. Register indirect and indexed
addressing are powerful addressing modes be-
cause the data address can be changed dynam-
ically during program execution. These ad-
dressing modes are essential for efficient table
lookup routines.
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There are instructions for which an address-
ing mode need not be given, either because one
is implied by the instruction, or because an ad-
dressing mode is not applicable. An example of
the former is the 6800 instruction “ABA”
which adds accumulators A and B and stores
the result in A; an example of the latter is the
8080 instruction “STC” which sets the carry
flag. These instructions are referred to as hav-
ing either implied or inherent addressing.

Relative addressing references data or ad-
dresses to the program counter. The 6800
branch instructions use the second byte of the
instruction as a signed 8 bit offset to the ad-
dress, which the program counter would con-
tain were a branch not encountered. There are
two advantages to the relative addressing
mode: 2-byte instructions result instead of 3-
byte instructions, and the reference to the pro-
gram counter produces machine code blocks
that are not dependent upon memory location.

Flags and Tests

Flags are single bit flip-flops that are set and
reset by processor operations and can be sub-
sequently tested for the purpose of conditional
branching. Flag bits are collected into a regis-
ter called the processor status word (PSW) or
the condition code register (CCR). Most of
these flags are defined by Boolean arithmetic:
overflow, carry/borrow, sign bit, auxillary or
half carry, zero, or parity. Arithmetic and log-
ical operations affect these flags in the usual
sense.

The operations that do and do not set flags
differ greatly from processor to processor. This
can easily confuse the programmer familiar
with one processor who is learning to use an-
other. The instructions can perform the same
operations on different processors yet affect
flags quite dissimilarly. On the 8080, “MOV”
operations affect no flags; on the 6800, the
equivalent “LDA” instructions clear the over-
flow flag, and set or reset the sign and zero
flags in accordance with the data. When flags
have not been affected, and it is desired to
make a test concerned with data from a pre-
vious operation, an additional flag-setting op-
eration is required. The 8080 input instruction

affects no flags. To use the zero or sign bit flags
after inputting data with the “IN port” in-
struction, a flag-setting operation such as
“ORA A” must follow the input instruction.
Conversely, sometimes instructions will affect
flags when it is not desired, and in these cases
it is necessary to save them prior to the oper-
ation for later retrieval.

Flags can be used for simple parameter
passing between routines. For example, a sub-
routine can be defined that exits with the carry
set if an invalid condition is encountered, and
exits with the carry clear otherwise. Software
that called the routine can then easily branch
to handle the different cases by performing a
simple carry flag test upon return from the
subroutine. Care must be taken to ensure that
flags are not inadvertently modified in such
instances.

Included in processor instruction sets are
special flag-testing operations. The 6800 bit
test instructions permit testing of particular
bits without modifying data. Compare instruc-
tions are essentially subtract operations that
modify only flags, not data. Conditional
branch, jump, and return instructions test the
flags in various combinations.

Other flags may be included in the CCR.
The 6800 has an interrupt status flag, which
signifies whether the interrupt mask is set or
reset. The 8048 has two general purpose flags
that can be used as the programmer desires.
Both flags can be cleared and complemented,
and tested by conditional jump instructions.
The 8048 also has eight conditional jump in-
structions that test the individual bits of the
accumulator; these are not flag bits but can be
tested just as easily as flags.

Flags and tests permit conditional branch-
ing, which is the greatest source of program
complexity. Great care must be taken so that
flags are modified correctly to ensure proper
branching.

Instructions

The specific instructions with which processors
are equipped varies, but a certain number are
shared by most, and fit into categories.

Data transfer instructions include move,
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load, store, and exchange operations. A large
part of controller software consists of data
transfer, and this instruction block is heavily
utilized.

Arithmetic instructions are add, subtract,
increment, decrement, and decimal adjust.
Logical instructions consist of AND, OR, ex-
clusive OR, rotate and shift, clear, comple-
ment, negate, compare, and test instructions,
Branch instructions are jump, conditional
jump, subroutine call, conditional subroutine
call, return from subroutine, return from inter-
rupt, conditional return from subroutine, soft-
ware interrupt, and wait for interrupt
instructions.

Stack instructions are push, and pop or pull
operations on registers. Machine control in-
structions include interrupt handling, halt, no
operation, and 1/0O instructions.

The instruction set differences between pro-
cessors will cause different software techniques
to be employed for different processors. Reg-
isters or memory for parameter storage, stack
or reserved memory for temporary data save,
and methods for parameter passing [50] be-
tween routines are choices that are processor
dependent.

27.7. CONTROL PROGRAMS

Controllers require programs that are typically
several thousand bytes long. Sufficient hard-
ware is provided for the controller to satisfy
the needs of the specific application. The re-
sulting small size serves to keep the cost down,
The size and execution speed of controller soft-
ware have a direct effect on the amount of
hardware required for a particular function.
Control programs should not be viewed in the
same fashion as large system software. This
section discusses choice of language, software
interfaces with peripherals, and some pro-
gramming techniques and concludes with a
controller example.

Language

Control programs are often written in assem-
bly language, partly because of the fact that in
the early microprocessor years flexible soft-

ware packages were not available. This left the
engineer with little alternative than to write an
entire control program in assembly language.
There are a number of advantages of assembly
code for control applications.

Much of the software is at a very low level,
consisting of software interfaces with periph-
erals. This is easily handled with assembly lan-
guage, and little advantage can be found in
other languages for this type of software—in-
deed, higher-level languages are often un-
wieldy when dealing with very low-level tasks.
Assembly language lets the programmer uti-
lize the full power of a processor’s instruction
set, with no other limitations imposed. Assem-
bly code can be shorter and execute faster than
higher-level languages, a particularly impor-
tant feature for microprocessor controllers be-
cause shorter programs require less ROM, and
the relatively slow microprocessor can be used
in some applications only by optimizing soft-
ware for speed. Control programs are short
enough so that it is reasonable to code with as-
sembly language, whereas for much larger
programs it is generally recognized that a
higher-level language would be preferable. For
these reasons, assembly language has main-
tained a strong hold on controller software.

However, assembly language has its disad-
vantages. There are a large number of instruc-
tions required to perform a complicated task.
If an equivalent program can be written with
fewer instructions in a higher-level language,
the software cost will be reduced. Following
program flow in assembly coding can be diffi-
cult. Higher-level languages can be understood
more easily. Although effort has been made to
standardize assembly code [51, 52], more
often than not a new assembly language must
be learned for every CPU that is used. Struc-
tured programming can be enforced or encour-
aged with a high-level language.

High-level languages that permit low-level
functions and assembly-level subroutine calls
can remove the disadvantages of completely
assembly-coded programs, while retaining
much of the advantages of assembly coding.
Some increase in program size must be
granted, and time-critical routines can still be
optimized in assembly code [53]. Software
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portability can be obtained through languages
that exist for several processors. Even interpre-
tive languages may be suitable for some tasks
[54]. Compiled languages can execute at re-
spectable speeds and do not require a large
run-time software package for execution. A
number of high-level languages are available
for microprocessors [55-64].

Some applications can be met through the
development of a specific pseudocode. A set of
subroutines may need to be called in varying
order, and a list of addresses that point to sub-
routines can be formed into a pseudocode pro-
gram. A small interpreter can be used to call
the appropriate routines from the pseudocode
program. Pseudointerpreters can range from
the very simple to complete high-level, user-
defined languages [65-68].

For complex control applications, control
software can be simplified by utilizing a real-
time operating system (RTOS) [69]. This per-
mits multitasking software to be written for an
application without the programmer becoming
involved with the complexity of the multitask-
ing software—only the application-dependent
software. A prepackaged RTOS can be used to
advantage in these instances.

Software Interface with Peripherals

A representative peripheral device communi-
cates with the CPU through several peripheral
registers. These registers are part of the pe-
ripheral chip and are accessed through proper
manipulation of the address and control lines.
Data are transferred through a data register.
The CPU can detgrmine the state of the pe-
ripheral by reading its status register. Status
register bits are reserved to indicate that the
device is ready to receive data, or that the de-
vice has received external data and that data
are available to be read by the CPU. Through
interrogation of the status register, the proces-
sor can send or receive information through
the data register in a controlled fashion.
Many peripheral devices can be configured
in different ways. The CPU can configure the
peripheral by writing to its control register.
This permits a single hardware device to serve
different functions under software control.

Complex peripherals may have additional pa-
rameter registers for storage of control
parameters.

A processor can service several peripherals
by polling their status registers and handling
the devices as required. Interrupt-driven de-
vices need the appropriate handling software.
A peripheral requiring service raises its inter-
rupt request line. If the processor has inter-
rupts enabled and unmasked, the CPU exe-
cutes an interrupt acknowledge cycle, and
control is transferred to the interrupt service
routine. If more than one device can cause the
same interrupt, the relevant status registers
are read to ascertain which is the interrupting
device. The necessary servicing software is
then executed, followed by a return from the
interrupt routine.

When the interrupt is acknowledged, the
processor interrupts are usually disabled,
which prevents multiple interrupts from level
sensitive interrupt inputs. If interrupts are to
be permitted during the execution of the inter-
rupt service routine, then the processor inter-
rupts should be reenabled or unmasked near
the beginning of the service routine. Other-
wise, steps should be taken to ensure that in-
terrupts are reactivated after the completion of
the service routine. Some processors will auto-
matically do this via a return from interrupt
instruction. Others require interrupt-enabling
instructions before the return instruction. If
some means is not taken to restore the inter-
rupt status after the completion of the inter-
rupt-handling software, no further interrupts
will be possible.

A controller may have several interrupt-
driven peripherals utilizing different interrupt
inputs. Sophisticated interrupt-handling soft-
ware can be devised by selectively masking the
interrupts. One device may have priority over
the others; its interrupt service routine should
not reactivate interrupts until after completion
of its task. The other interrupt service routines,
upon entry, should reactivate interrupts after
masking all but the one priority device. Proper
manipulation of interrupt enables and masks
can produce any desired relationship between
peripherals and the CPU. Minicomputers and
some 16 bit micros support prioritized vectored
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interrupts. This hardware function reduces
software interrupt controls to modification of
priority registers.

Programming Techniques

Control processors lack the high-powered in-
structions and high speed of large computers.
This weakness can often be combatted with
the extensive use of lookup tables. Values that
can be determined by complex calculation are
instead placed into a table in ROM. The ad-
vantage is that the complex calculation, which
is difficult to implement in the restricted in-
struction set and requires a long execution
time, is avoided. A properly indexed table
lookup routine can execute rapidly. An exam-
ple of a lookup table replacing a conventional
gravity calculation is found in Reference 70.
An additional advantage is that should the
control equation require substitution with an-
other in a program revision, instead of requir-
ing a new complex calculation routine, table
value changes are simply needed. Table data
can be trimmed to match true specifications
versus approximation by a mathematical for-
mula. The disadvantage of this type of lookup
table is that much ROM space can be occu-
pied, particularly when small step sizes are uti-
lized. Linear interpolation and clever methods
for finding values through multiple tables can
reduce table lengths to manageable sizes.

The proper use of interrupts can simplify
software beyond the needs of peripheral inter-
facing. The segmentation of software between
several interrupt routines and the main pro-
gram serves to make the software structure
more comprehensible. Placement of interrupt-
driven peripheral data into a queue permits
other routines to directly work with the data
queue instead of the 1/O details. A real-time
clock interrupt may be desirable as a program-
ming tool even if a clock function is not re-
quired in the controller. Multiple functions can
be handled by a single controller almost as
simply as dedicating a separate processor to
each function if clock interrupts are used to al-
locate time to each task. The alternative is to
write one integrated control program that per-
forms each function; this is certainly more
complex than writing separate, individual con-

trol programs and allocating CPU time to each
through a clock interrupt routine.

Care must be taken to check the execution
times of interrupt routines to ensure adequate
time before another interrupt service is re-
quired. Perishable peripheral data must be
handled before being overwritten and lost. It
should be seen that the use of interrupts falls
into two distinct categories: efficient peripheral
communication and desirable software seg-
mentation.

Special programming techniques are usually
not required for DMA processing since DMA
is inherently a hardware procedure. This can
be limited to programming a special purpose
DMA-handling peripheral chip. An example
of this can be found in [71].

Control programs can have need for stan-
dard computations as do larger machines, but
these must be written with the imposed restric-
tions of the less powerful CPU. Examples of
pseudorandom sequence generation [72-74],
multiply routines [75, 76], and fast Fourier
transforms [77] can be found. Programming
techniques can be found in References 78, 79.

A Controller Example

The software structure of a MiCroprocessor
based CRT terminal will be described. Before
writing the control software, the programmer
must first have knowledge of the hardware
structure: which chips perform peripheral
functions, and how communication is estab-
lished between the CPU and peripheral de-
vices. The terminal accepts serial data and dis-
plays the ASCII character on 2 CRT monitor
connected to the video output of the terminal.
Characters entered on a keyboard are trans-
lated into ASCII and transmitted over the se-
rial line. Keyboard characters may optionally
be echoed on the display. Activating a mode
key temporarily replaces the displayed screen
with a menu of available terminal options,
such as baud rate, parity modes, tabs, scroll-
ing, and cursor type. Keyboard entries change
the options and modify the menu accordingly.
A second depression of the mode key restores
the original display screen and returns opera-
tion to that of a standard CRT terminal.
Figure 27.2 shows a block diagram of the
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Figure 27.2. Sample CRT terminal controller.

CRT terminal. A similar system can be found
in References 71 and 80. An 8085 CPU with
8K of RAM and 4K of ROM forms the basis
of the controller. Most of the RAM is used for
screen memory and is large enough to permit
off-page scrolling. The control program and its
associated tables are contained in the ROM.
Serial interface is handled by an 8251A
USART (universal synchronous asynchronous
receiver/transmitter). An 8253 timer/counter
is used as a programmable divider operating
from the CPU master clock to provide two sig-
nals: the baud rate clock for the USART, giv-
ing software-controllable baud rates, and an
audio output tone to produce a bell signal. An
8275 CRT controller operates in conjunction
with video circuitry to generate the video out-
put. Power-on options are set by an internal
switch and read by an input port of an 8255
PPI, which also has output ports to control the
video circuitry. The keyboard is scanned by an
8279 keyboard interface device.

The controller operates with four interrupts.
The mode switch signal is passed through syn-

chronizing logic to the TRAP input. This is a
nonmaskable interrupt input. When a charac-
ter is received on the serial line, the USART
raises the data available (DAV) output, re-
questing an RSTS5.5 interrupt.

The remaining two interrupts are used for
communication with the CRT controller chip.
The 8275 is designed to obtain display char-
acters through DMA. One line of characters is
loaded at a time, and video timing require-
ments are such that 80 characters must be
loaded in less than 600 microseconds. This
high-speed data transfer is best accomplished
with DMA logic, a procedure that is shown in
Reference 71 and that requires a DMA con-
troller chip. A different method, using inter-
rupts instead of DMA, is found in Reference
80. Hardware transforms the 8275 DMA con-
trol signals into signals that permit data trans-
fer via a sequence of memory reads, initiated
by an interrupt. The end of a display line in-
terrupts the RST6.5 line. This interrupt ser-

~ vice routine must send the appropriate char-

acters to the 8275, which then converts them
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Call display
w
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Call USARTOUT

Figure 27.3. Main program.

into video signals with the external logic.
When the display page is complete, the 8275
signals the CPU through the RST7.5 interrupt
that the frame is complete. The CPU must
then reset the display pointer to the top display
line in preparation for the next RST6.5 inter-
rupt. Video conventions cause the RST7.5 in-
terrupt to be activated 60 times per second.
This accurate interrupt is also used as a real-
time clock interrupt.

Figure 27.3 shows the main program, and

Figure 27.4 shows the interrupt routines. Upon
power-up, variables are initialized. The periph-
eral devices are then initialized through their
control registers. This device initialization
must set the operating modes and the starting
data. Figure 27.5a gives the software neces-
sary to initialize the PPL

The RST7.5 interrupt routine sets the dis-
play line pointer (used in the RST6.5 routine)
to the top display line of the screen. The key-
board peripheral is checked for key depres-
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Figure 27.4. Interrupt routines.

sions; if any are found, the character is trans-
lated into ASCII and pushed into a keyboard
queue. A real-time clock updating routine is
called, and the interrupt routine exits. Inter-
rupts are reenabled during the servicing of the
RST7.5, permitting the much faster RST6.5
interrupts to occur during the clock and key-
board processing.

The RST6.5 interrupt routine sends the dis-
play line of data specified by the display
pointer to the 8275. Because this occurs at ap-

proximately 600 microsecond intervals, this
consumes a large portion of the available CPU
time, and this interrupt service routine must be
trimmed for rapid execution.

The RSTS.5 interrupt is straightforward—
the status register need not be checked since a
character must be available (it caused the in-
terrupt). The character, therefore, is read from
the USART data register and pushed into a
received character queue, This software is
shown in Figure 27.5b.
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A. 8255 PPI Initialization

MVI A90H ;SET PORT A TO INPUT,
ouT PPICONTROL :PORTS B & C TO OUTPUT
MVI A.BYTEB ;INITIALIZE

ouTt PPIPORTB ;PORT B

MVI ABYTEC JINITIALIZE

ourT PPIPORTC ;PORT C

B. USART Interrupt Routine
;RST 5.5 INTERRUPT SERVICE ROUTINE

; CHARACTER AVAILABLE FROM USART

RSTSS: PUSH

PSW 'SAVE ACCUMULATOR & FLAGS
IN ;READ CHARACTER FROM
USARTDATA USART
;PUSH CHARACTER ONTO
CALL USARTPUSH QUEUE :
POP PSW ;RESTORE ACC. & FLAGS
El ;REENABLE INTERRUPTS
RET ;RETURN FROM INTERRUPT

C. OUTPUT CHARACTER ROUTINE
: OUTPUT A CHARACTER FROM REGISTER A

TO THE USART.

; WAIT UNTIL USART IS READY IF

NECESSARY.

USARTOUT:

WAIT: PUSH PSW ;SAVE CHARACTER TO BE SENT
IN USARTSTATUS  ;READ USART STATUS REGISTER
RAR ;CHECK BUSY BIT
JNC WAIT ;LOOP IF BUSY
POP PSW :RETRIEVE CHARACTER
ouT USARTDATA ;TRANSMIT IT
RET ;RETURN FROM ROUTINE

Figure 27.5. CRT terminal controller software.

After main program initialization, a simple
loop program is executed to perform the CRT
terminal function. The keyboard queue is
checked; if it is not empty, a keyboard pop rou-
tine retrieves a character in a first in, first out
(FIFO) order. If the echo is enabled, the dis-
play routine is called, placing the character on
the screen. The character is then transmitted
with the USART output routine (shown in
Figure 27.5¢c). When all keyboard characters
are sent, the received character queue is
checked. If a character is found, a character is
retrieved from this FIFO queue by the
USART pop routine, and the character
displayed.

Depression of the mode switch takes control
from the main terminal loop and transfers it to
the TRAP routine. Interrupts are reenabled,
permitting video functions to continue. A pro-
gram loop is entered that displays terminal op-
tions and permits changes via the keyboard.
Any serial characters arriving during execu-
tion of this function continue to be placed into
the received character queue, and will be dis-
played when the options-setting mode is de-
parted. The various terminal options are stored
in lookup tables, and one table-accessing rou-
tine serves for many options. Rather than cal-
culating the required divider ratio to supply
specified baud rates from a fixed master clock,



SOFTWARE DEVELOPMENT FOR MICRO/MINI MACHINES 615

these ratios are precalculated and stored in the
same table that supplies the baud rate menu.
A second mode switch depression interrupts
the TRAP interrupt routine itself, this is de-
tected, and a return from the original interrupt
is performed, returning normal CRT terminal
operation.

This microprocessor controller example
shows how control, status, and data registers
and interrupts are used for communication
with peripherals. A typical use of lookup tables
is also given.

27.8. DEVELOPMENT AIDS

Software production requires much time.
Methods that can reduce the required time to
write, test, debug, and finalize programs are
valuable.

Assemblers

CPU manufacturers assign mnemonics to the
binary machine language instructions, An as-
sembler is a program that accepts as input an
assembly language source program written
with mnemonics, and that outputs the corre-
sponding machine language object code. A
minimal assembler performs other functions:
address calculation, symbol substitution for
data and addresses, offset calculation, binary,
octal, decimal, and hexadecimal conversions,
addition, subtraction, multiplication, and divi-
sion of data and addresses, error flagging, and
formatted listing and symbol table prepara-
tion. A discussion of assemblers can be found
in Reference 81.

An assembler program may execute on the
same processor for which it is written, in which
case it 18 called a resident assembler, or on a
different host processor, where it is called a
cross assembler. Controller software will al-
ways be assembled on a host machine, not on
the controller itself; the host may be of the
same type CPU as the controller or completely
different. This is in contrast with software for
large computers, which is usually assembled
on the machine for which it is being written.

Cross assemblers are often more powerful
than resident assemblers for micros because of
the greater size and speed of the computer on

which the cross assembler is being run, com-
pared with even a large size micro hosting a
resident assembler.

A standard assembler operates on a one-for-
one basis between mnemonics and object code.
A macro assembler permits a set of instruc-
tions to be defined as a macro command. Com-
monly used instruction sequences can be sim-
plified with macros. Caution should be
exercised not to use macros when subroutines
are more appropriate; the use of macros can
increase speed while sacrificing program short-
ness. Discussions of macro assemblers can be
found in References 78 and 82.

Development Board

A controller prototype may be constructed
from a standard development board for a spe-
ciic CPU. The board contains the CPU,
ROM, RAM, and I/O. A monitor program lo-
cated in ROM permits loading programs into
RAM for test execution. The prototype is not
identical to the dedicated, special-purpose final
product, but contains enough devices to substi-
tute for the actual controller. Most develop-
ment boards contain an area where specialized
circuitry can be quickly added with wire-
wrapped or point-to-point connections. The ad-
vantage of the development board is that soft-
ware can quickly be loaded into RAM for ex-
ecution, and the debug features of the
development board can be exercised to de-
crease the time between program iterations.
Development boards have a keyboard for pro-
gram entry and control, and display readouts
for memory interrogation and status checking.
Down-line loading—the capability to directly
load software from a host system to the
board—greatly reduces turn-around time. De-
velopment boards are available for most
MiCroprocessors.

Debug Capabilities

The low-level ROM monitor resident on a de-
velopment board permits the power of the
CPU to be utilized for debugging purposes. At
a minimum, after execution of test software,
memory locations can be examined to deter-

mine the effect of the test program. Data val-
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ues can be changed through the monitor and
the test program again executed. Subroutines
for I/O and other functions located in the
monitor can be called by test programs to sim-
plify testing. An example of a low-level moni-
tor that can be used on a development board is
found in Reference 83.

When all else fails, if the development board
has the capability, single stepping through a
program will usually locate a problem, al-
though patience is advised with this method.
Single stepping can be performed either with
hardware or monitor software. The effect is to
permit only a single instruction of the test pro-
gram to be executed at a time. A more effec-
tive debug method consists of placing break-
points at critical spots in the test program.
When execution reaches a breakpoint, control
is transferred from the test program to the
ROM monitor, from which additional tests
can be performed. Multiple breakpoint setting
can permit zeroing in on a problem in short
order. Sophisticated breakpoint capabilities
allow a breakpoint to be passed a specific num-
ber of times before transfer of control takes
place. This is useful in testing program loops.

Development Systems

Because of.the inherent nature of a controller,
software development must be done on a dif-
ferent system or on a host processor. Although
general-purpose computers can be used to this
end, development systems are produced specif-
ically for this purpose [84-86]. The develop-
ment system includes assemblers and high-
level language compilers. Test program exe-
cution can be done to a limited extent directly
on the system.

Simulation can be used to provide debug
features that are not available on a develop-
ment board or test controller. A simulator is a
program that creates a virtual machine pat-
terned after the CPU of interest, and the test
software is supplied to the simulator as input.
Simulation runs much slower than direct exe-
cution, and timing relationships may not hold.
As a result, simulation may not be effective in
testing software interfacing between devices
that are time critical.

The most sophisticated of debug techniques
is emulation. With this method the develop-
ment system controls a special hardware pack-
age that behaves the same as an actual CPU.
A plug from the emulator replaces the proces-
sor chip from a test controller. Timing remains
the same as with the actual CPU, and the de-
velopment system can track the behavior of the
test controller to provide advanced debugging
capabilities at actual operating speed in the ac-
tual controller. Descriptions of emulators can
be found in References 87 to 91.

After debugging, the program must be
placed, or burned, into EPROM. The devel-
opment system must have the capability to
burn the EPROM. A large number of
EPROMs are available, and EPROM pro-
grammers generally have personality modules
that are selected for individual EPROMs. This
capability is most important when the debug
features of a sophisticated development board
or system are not available: in this case, the
test programs must be placed into EPROM
and tested on the actual controller for each
program iteration.

It can be seen that the development aids for
small microprocessor controllers can be very
powerful computers when compared with the
small controller for which they are created.

27.9. HARDWARE/SOFTWARE
TRADEOFFS

There are many controller functions that can
be realized through either hardware or soft-
ware. A choice must be made between hard-
ware peripheral devices and additional soft-
ware for hardware replacement. A common
example is that of a serial interface. Hardware
implementation can be done with a UART,
satisfying both sending and receiving func-
tions. A program, called a software UART,
may instead by written that, in conjunction
with two bits of parallel 1/0O, performs the
UART task.

The advantage of the software UART is
clear—one integrated circuit package is elim-
inated (if two I/O bits are otherwise availa-
ble). There are several disadvantages. Unless
complicated software is used, it is not possible
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to send and receive a character at the same
time. The CPU is occupied with the actual
timing of the serial data, and this time is gen-
erally wasted in software UARTSs. An input
character may be missed or received incor-
rectly if it arrives while the processor is not
ready for it. With clever software these draw-
backs can be removed. The complexity of the
software must be contrasted with the almost
trivial software interface that a hardware
UART requires.

The decision to implement a function in
software or hardware depends upon the de-
mands on the CPU and the relative cost of
either approach, If spare processor time is
available, and a large number of controller
units are to be produced, the additional soft-
ware cost will be overshadowed by the reduc-
tion in hardware in production quantities. For
low-quantity products, depending upon the ad-
ditional software complexity, it may be pref-
erable to use a hardware implementation sim-
ply to save on software cost. Software
implementations may require an additional
ROM for greater program storage, cancelling
the advantage of eliminating peripheral chips.

Software implementation of several hard-
ware functions may bog the processor down
such that it barely has enough time to perform
its task. Costs may indicate that the software
approach is preferable, but if product updates
are expected, it might not be possible to handle
additional software because it could overex-
tend the processor power. Eliminating hard-
ware peripherals from a controller design may
result in a compact, several-chip design. As a
byproduct, address decoders for peripheral de-
vice selection may not be needed and may be
left out. If the time comes when a peripheral
needs to be added, the bus structure of the
mostly software approach may preclude addi-
tional devices without extensive redesign. This
tradeoff is clear: structuring a controller so
that it has good capability for hardware expan-
sion increases costs, This fact must be weighed
against the lower flexibility of a wholly soft-
ware implementation.

The major distinction between hardware
and software function implementations is
speed. Floating-point operations can certainly

be handled in software—but the speed can be
increased tremendously with the addition of a
floating-point processor chip. The chip versus
subroutine question will usually be answered in
terms of the performance requirements.

27.10. FAULT TOLERANCE

The subject of fault-tolerant computing en-
compasses a large area. Considering micropro-
cessor-based controllers instead of general-
purpose computers causes a shift in fault-tol-
erant perspectives.

High Reliability Requirements

Processor-based devices often control critical
mechanisms. The results of many microproces-
sor applications would be disastrous, were the
processor system to fail in a particular fashion
[92]. Automotive controllers, power plant con-
trols, industrial process control, and air- and
space-borne systems provide examples where
reliability considerations must seriously be ex-
plored. Greater concern must be given to reli-
ability in computer control applications than
general-purpose computing applications.
There are two types of faults: permanent
and intermittent or transient (I/T). Perma-
nent faults cause physical damage and the
malfunctioning device must be replaced. I/T
faults can be due to many causes, some of
which are the effects of a hostile environment.
Electromagnetic interference from various
sources can disturb processor systems, not
physically damaging any circuit element, but
nevertheless causing a system upset. ROM
program storage in microprocessor controllers
prevents I/T faults from modifying the pro-
gram store, improving recovery chances. De-
pending upon the I/T fault severity and hard-
ware and software configurations, the system
may or may not be able to recover from an
upset. A number of approaches can be used to
increase the likelihood of system recovery.

Hardware Modifications

Additional hardware can be used to improve a
controller’s reliability. Checkbits increasing
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the number of bits per word can augment pro-
cessor memory with error-correcting codes.
This approach safeguards a portion of a con-
troller but does not guard the entire system.
Traps of several sorts can flag system errors.
Invalid memory access is often a result of a
program crash, and invalid address traps can
be used to interrupt or reset the CPU. Invalid
op-code fetch traps will catch system upsets
that result in data being incorrectly inter-
preted as instructions. Special monitoring cir-
cuitry can detect undesirable states such as
halts or interrupt disable modes. The primary
concern of reliability constraints in controllers
is to prevent a total program crash, in which

event the control function is terminated. The
secondary concern is to then preserve data in-
tegrity. If a system crash is aborted, the power
of the processor can be used to determine the
best place to resume control—once a fault
causes a crash, unless the system is somehow
restarted, all is lost.

Software Modifications

Internal state variables can be encoded in a
fashion such that faults causing variable
changes can be caught later as data inconsis-
tencies. Proper segmentation of software mod-
ules permits subprograms to check one an-

A. Routine Correct for Defined Inputs, But an
Undefined Input Causes Endless Loop
:BIT POSITION TO BINARY CONVERTER

ROUTINE

:ENTER WITH A SINGLE BIT SET IN REGISTER

A

:EXIT WITH REGISTER B CONTAINING THE

BINARY

;POSITION OF THE SINGLE SET BIT.
:DESTROYS REGISTER A.

5

MVI B.—1 :INITIALIZE REGISTER B
*  LOOP: INR B :BUMP COUNTER
RRC :ROTATE REGISTER A RIGHT
JNC LOOP :CHECK FOR CARRY SET
RET :-RETURN FROM SUBROUTINE
B. Corrected Subroutine

;:BIT POSITION TO BINARY CONVERTER

ROUTINE

‘ENTER WITH A SINGLE BIT SET IN REGISTER

A

‘EXIT WITH REGISTER B CONTAINING THE

BINARY

:POSITION OF THE SINGLE SET BIT.

:DESTROYS REGISTER A.

;NDW WITH GUARANTEED EXIT.
MVI B,—1 {INITIALIZE REGISTER B

LOOP: INR B :BUMP COUNTER

ORA A :SEE IF REGISTER A=0
RZ 'YES, ABORT AND RETURN
RRC :-ROTATE REGISTER A RIGHT
JNC LOOP :CHECK FOR CARRY SET
RET :RETURN FROM SUBROUTINE

Figure 27.6. Effects of out-of-range input variables.
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other. Obvious checks—such as verifying that
the stack pointer and other data pointers are
within the proper boundaries—can be made to
permit a software reset.

A fairly simple, yet important constraint
can be added to program modules to improve
survivability, which may not be addressed
other than in the context of upset phenomena.
Program modules often execute on the as-
sumption that some conditions hold on input
variables. If no faults appear, these assump-
tions will be correct. A fault arrival can change
a variable, either directly or indirectly, and the
effect on the subsequent program module must
be considered. Correct results must be guar-
anteed from a module if entry is with uncor-
rupted variables; module exit must be guar-
anteed under all input possibilities. An endless
loop created by invalid input conditions causes
a program crash. Figure 27.6a shows how this
can occur. This module works on the assump-
tion that upon entry, register A contains a sin-
gle set bit. If this subroutine is called with reg-
ister A erroneously containing all zeroes, an
endless loop results. A simple test shown in
Figure 27.6b can correct this problem.

Totally software checks can be made by per-
forming calculations several times and check-
ing to see if the results agree. This method can
be effective by spreading the computations out
over time so that environmentally induced
faults will only affect some computations and
not others. The byproduct of this fault toler-
ance method is lowered throughput, since one
processor is repeating its calculations many
times, where only once is required in the ab-
sence of faults.

Combined Hardware and Software
Modifications

A commonly used procedure to guard against
program crashes is that of a watchdog timer.
A hardware timer is appended to the system,
and the software is modified so that it period-
ically activates it. The timer is connected so
that if the processor fails to activate it within
a specified period of time, the system is inter-
rupted or reset. This method works on the as-
sumption that when the system crashes, it will
fail to periodically activate the external timer.

Very elaborate fault-tolerant schemes are
possible with microprocessor controllers. The
use of voters and triple modular redundancy
techniques [93], with appropriate system soft-
ware exercising, can be used to achieve high
reliability.

Much can be done with both hardware and
software to improve controller reliability [94].
It is very difficult to be able to evaluate general
systems for proper validation.

27.11. PERSPECTIVE FOR THE FUTURE

Microprocessor-based controllers will surely
continue to replace a greater number of ran-
dom-logic designs, and applications will place
such controllers in almost all electronic equip-
ment, providing intelligent interfaces with hu-
mans. This expanded controller usage will ex-
pedite the concern of fault tolerance in such
devices. If chips become available that are de-
signed for use with high-reliability smeasures,
then built-in fault tolerance should be
addressed.

The semiconductor industry is preparing it-
self for designs that can intelligently utilize a
million transistors per integrated circuit. De-
sign considerations for single-chip processors
of the future can be found in Reference 95.
Microprocessors that can challenge the power
of current mainframe computers are appear-
ing now. Intel's iAPX 432 micromainframe
[96] is an indication of the future of sophisti-
cated microprocessors.

The predicted software catastrophe result-
ing from transferring system design from
hardware to software will be combatted with
built-in operating systems [97]. This could al-
leviate software design problems in much the
same way as standard digital logic packages
aided random-logic synthesis.

Powerful computing systems constructed
from many inexpensive miCroprocessor ele-
ments promise to be the way of the future.
These distributed intelligence designs will de-
pend upon much microprocessor software
development.
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